Uncategorized

Healthy, Happy and Independent: Tips and Resources for Seniors

Healthy, Happy and Independent: Tips and Resources for Seniors

According to the National Institute on Aging, one-third of all American seniors not living in nursing homes or hospitals live on their own. That’s good news, because it means a great many older adults are able to remain independent, which most prefer. But it also places a premium on the need to maintain beneficial self-care habits and to utilize available health resources.

Exercise for seniors

Maintaining muscle strength and flexibility is paramount for seniors, particularly those who live alone. Seniors are especially susceptible to falls, the leading cause of injury among older adults in the United States and Canada. Regular exercise can help older adults avoid falls by improving strength and agility, and it can be achieved without the expense and inconvenience of a gym membership. Simple exercises, such as walking heel to toe in a straight line for 20 steps, and back leg raises (lift your right leg straight back keeping knees straight; hold for a second, then bring your leg back down slowly, repeating 15 times per leg) can be done in the comfort of your own home.

Health care

Health care is probably the single most important resource for older adults. Seeing your doctor and dentist on a regular basis will make it easier to identify symptoms and prevent serious problems, so don’t skip those appointments. If you’re looking for extra coverage, signing up for a Medicare Advantage plan, such as those offered from Cigna-HealthSpring, may be your best option. These plans can cover dental and vision care, prescription drugs, and even membership to fitness facilities.

Nutrition

Seniors who live in isolation may be tempted to opt for easy food options like fast food, candy and chips, and highly-processed foods. These are, for the most part, non-nutritious and can contribute to health problems like obesity, diabetes, and cardiovascular degeneration. There are plenty of simple, nutritional recipes that are ideal for older adults. Start the day with a bowl of pumpkin oatmeal, a combination of steel-cut oats, canned pumpkin, skim milk, walnuts, cinnamon and nutmeg. Whip up a roasted tomato and rosemary soup with kale and potatoes – a healthy meal in a bowl – for lunch.

A mixed veggie lentil bake is an easy dinner recipe, a powerhouse of superfood and tasty ingredients, including lentils, spinach, mixed vegetables, parmesan and reduced-fat cheddar cheese. For a tasty and healthy dessert or snack, try a bowl of frozen berries dipped in Greek yogurt. Eating healthy can be simple, fun and delicious featuring dishes made with common, everyday ingredients, many of which you probably already have on hand.

Program resources

There’s plenty of information online with vital health resource information tailored to the needs of seniors. The National Institutes of Health and Healthfinder.gov provide abundant information designed to help you maintain a healthy lifestyle. Eldercare Locator and the Administration on Aging connects older adults with health services for them and their families. Goodwill NFP is an initiative aimed at helping seniors who live alone maintain self-sufficiency through financial stability and good health practices.

Finding healthcare providers

Medicare and Medicaid are powerful healthcare resources for seniors, but finding providers who accept Medicare/Medicaid can be time consuming, depending on your situation and location. The Centers for Medicare and Medicaid Services allow you to search for Medicare-covered providers through its Physician Compare website. Simply enter all or part of a doctor’s last name or group practice. You can also search by medical condition or specialty. You’ll get a list of covered practices and professionals in your area, as well as specialist profiles and directions to their offices.

There’s no trick to leading a healthy lifestyle. With a little knowledge and dedication, you can incorporate healthy lifestyle choices into your daily routine, feel better and stay active. Include a variety of physical activity and foods to avoid getting bored and ensure you’ll stick with those positive self-care practices.

Courtesy of Pexels.com

Cocaine abuse Depression Drug Abuse Esketamine Ketamine

703-844-0184 | Ketamine Clinic for Depression | Arlington, Virginia 22201 | Ketamine Therapy for Cocaine abuse | Intranasal ketamine center Fairfax, Virginia| Spravato Virginia Center 22306



NOVA Health Recovery | Alexandria, Va 22306 | Call for esketamine and nasal ketamine as well as IV Ketamine for depression, PTSD, anxiety  703-844-0184 < Link

Mindfulness-Based Prevention Outcomes for Cocaine Dependence Improved by Ketamine Injection





A single ketamine infusion improved several treatment outcomes in adults with cocaine dependence who were engaged in mindfulness-based behavior modification, according to study data published in the American Journal of Psychiatry.

Individuals seeking treatment for cocaine dependence (n=55) were randomly assigned to receive a 40-minute intravenous infusion of either ketamine (0.5 mg/kg) or midazolam (0.025 mg/kg) as part of a five-week trial. Patients were hospitalized for five days in a psychiatric research unit, during which time they received daily sessions of mindfulness-based relapse prevention. On day 2, patients received their infusion; on day 5, they were discharged. Patients then attended twice-weekly follow-up visits for four weeks, at which they continued their sessions and were assessed for various clinical variables. Cocaine use after discharge was assessed via patient interview and urine toxicology screening. A six-month follow-up interview was also conducted by telephone.

Demographic and clinical variables were similar in patients who received ketamine (n=27) and patients who received midazolam (n=28). Route of cocaine ingestion was controlled for in all analyses. A total of 48.2% of patients in the ketamine group remained abstinent during the last two weeks of the trial compared with 10.7% of the midazolam group. The odds of end-of-study abstinence in the ketamine group was nearly six times that in the midazolam group (odds ratio, 5.7; 95% CI, 1.3-25.1; =.02). Per Cox regression analysis, the ketamine group was 53% less likely to relapse compared with the midazolam group (hazard ratio, 0.47; 95% CI, 0.24-0.92; =.03). In addition, craving scores were 58.1% lower in the ketamine group than in the midazolam group (=.01). At the six-month telephone follow-up interview, 12 patients (44%) in the ketamine group reported abstinence compared with none in the midazolam group. The percentage of abstinent individuals was significantly associated with treatment group (<.001). 

A single ketamine infusion was associated with significantly improved treatment outcomes compared with midazolam in a cohort of adults with cocaine dependence. Further research in a larger sample is needed to confirm these findings.

Reference

Dakwar E, Nunes EV, Hart CL, et al. A single ketamine infusion combined with mindfulness-based behavioral modification to treat cocaine dependence: a randomized clinical trial [published online June 24, 2019]. Am J Psychiatry. doi:10.1176/appi.ajp.2019.18101123

Cluster Headache Esketamine Ketamine

703-844-0184 | NORTHERN VIRGINIA KETAMINE CENTER FOR DEPRESSION | NOVA HEALTH RECOVERY | ESKETAMINE VIRGINIA | Ketamine for Cluster Headaches | Ketamine Treatment of Migraine Headache

NOVA Health Recovery | Alexandria, Va 22306 | Call for esketamine and nasal ketamine as well as IV Ketamine for depression, PTSD, anxiety  703-844-0184 < Link



Ketamine Infusion Combined With Magnesium as a Therapy for Intractable Chronic Cluster Headache: Report of Two Cases

Chronic cluster headache (CH) is a rare, highly disabling primary headache condition. As NMDA receptors are possibly overactive in CH, NMDA receptor antagonists, such as ketamine, could be of interest in patients with intractable CH.

Ketamine Infusion Combined With Magnesium as a Therapy for Intractable Chronic Cluster Headache: Report of Two Cases

September 1, 2017 by CHSG Admin

Authors: Xavier Moisset MD, PhD, Pierre Clavelou MD, PhD, Michel Lauxerois MD, Radhouane Dallel DDS, PhD, Pascale Picard MD
Source: Headache, Vol. 57, Issue 8, September 2017: 1261–1264. 

Abstract

Background

Chronic cluster headache (CH) is a rare, highly disabling primary headache condition. As NMDA receptors are possibly overactive in CH, NMDA receptor antagonists, such as ketamine, could be of interest in patients with intractable CH.

Case reports

Two Caucasian males, 28 and 45 years-old, with chronic intractable CH, received a single ketamine infusion (0.5 mg/kg over 2 h) combined with magnesium sulfate (3000 mg over 30 min) in an outpatient setting. This treatment led to a complete relief from symptoms (attack frequency and pain intensity) for one patient and partial relief (50%) for the other patient, for 6 weeks in both cases.

Conclusion

The NMDA receptor is a potential target for the treatment of chronic CH. Randomized, placebo-controlled studies are warranted to establish both safety and efficacy of such treatment.

Ketamine Infusions for Treatment Refractory Headache

December 27, 2016

Management of chronic migraine (CM) or new daily persistent headache (NDPH) in those who require aggressive outpatient and inpatient treatment is challenging. Ketamine has been suggested as a new treatment for this intractable population.

Ketamine Infusions for Treatment Refractory Headache

December 27, 2016 by CHSG Admin

Authors: Jared L. Pomeroy MD, MPH, Michael J. Marmura MD, Stephanie J. Nahas MD, MSEd, Eugene R. Viscusi MD
Source: Headache, Dec. 27, 2016

Abstract

Background

Management of chronic migraine (CM) or new daily persistent headache (NDPH) in those who require aggressive outpatient and inpatient treatment is challenging. Ketamine has been suggested as a new treatment for this intractablepopulation.

Methods

This is a retrospective review of 77 patients who underwent administration of intravenous, subanesthetic ketamine for CM or NDPH. All patients had previously failed aggressive outpatient and inpatient treatments. Records were reviewed for patients treated between January 2006 and December 2014.

Results

The mean headache pain rating using a 0-10 pain scale was an average of 7.1 at admission and 3.8 on discharge (P < .0001). The majority (55/77, 71.4%) of patients were classified as acute responders defined as at least 2-point improvement in headache pain at discharge. Some (15/77, 27.3%) acute responders maintained this benefit at their follow-up office visit but sustained response did not achieve statistical significance. The mean length of infusion was 4.8 days. Most patients tolerated ketamine well. A number of adverse events were observed, but very few were serious.

Conclusions

Subanesthetic ketamine infusions may be beneficial in individuals with CM or NDPH who have failed other aggressive treatments. Controlled trials may confirm this, and further studies may be useful in elucidating more robust benefit in a less refractory patient population.

Ketamine i. v. for the treatment of cluster headaches: An observational study

April 11, 2016

Cluster headaches have an incidence of 1–3 per 10,000 with a 2.5:1 male-to-female gender ratio. Although not life threatening, the impact of the attacks on the individual patient can result in tremendous pain and disability. The pathophysiology of the disease is unclear, but it is known that the hypothalamus, the brainstem, and genetic factors, such as the G1246A polymorphism, play a role. A distinction is made between episodic and chronic cluster headaches. In a controlled setting, we treated 29 patients with cluster headaches (13 with chronic cluster and 16 with the episodic form), who had been refractory to conventional treatments, with a low dose of ketamine (an NMDA receptor antagonist) i.v. over 40 min to one hour every 2 weeks or sooner for up to four times. It was observed that the attacks were completely aborted in 100 % of patients with episodic headaches and in 54 % of patients with chronic cluster headaches for a period of 3–18 months. We postulated neuroplastic brain repair and remodulation as possible mechanisms.

Safety and Efficacy of Prolonged Outpatient Ketamine Infusions for Neuropathic Pain

July 1, 2006

Ketamine has demonstrated usefulness as an analgesic to treat nonresponsive neuropathic pain; however, it is not widely administered to outpatients due to fear of such side effects as hallucinations and other cognitive disturbances. This retrospective chart review is the first research to study the safety and efficacy of prolonged low-dose, continuous intravenous (IV) or subcutaneous ketamine infusions in noncancer outpatients.

Ketamine has demonstrated usefulness as an analgesic to treat nonresponsive neuropathic pain; however, it is not widely administered to outpatients due to fear of such side effects as hallucinations and other cognitive disturbances. This retrospective chart review is the first research to study the safety and efficacy of prolonged low-dose, continuous intravenous (IV) or subcutaneous ketamine infusions in noncancer outpatients. Thirteen outpatients with neuropathic pain were administered low-dose IV or subcutaneous ketamine infusions for up to 8 weeks under close supervision by home health care personnel. Using the 10-point verbal analog score (VAS), 11 of 13 patients (85%) reported a decrease in pain from the start of infusion treatment to the end. Side effects were minimal and not severe enough to deter treatment. Prolonged analgesic doses of ketamine infusions were safe for the small sample studied. The results demonstrate that ketamine may provide a reasonable alternative treatment for nonresponsive neuropathic pain in ambulatory outpatients.

Intranasal Ketamine for the Relief of Cluster Headache

Ketamine’s Mechanism of Action

Ketamine (2-chlorophenyl)-2-(methylamino)-cyclohexanone hydrochloride), a human and veterinary anesthetic agent, has an extremely varied set of pharmacologic actions depending on the dosage used.1 A selective uncompetitive N-Methyl-D-aspartic acid (NMDA) glutamate receptor antagonist, the drug has been in legitimate clinical use since 1963.

When administered as an appropriate pharmacologic agent, ketamine has been shown to serve as a safe anesthetic agent. At sub-anesthetic doses, ketamine acts as an uncompetitive antagonist at ionotropic NMDA-type glutamate receptors, binding to a site on the receptor while it is open. Ionotropic glutamate receptors (iGluRs) mediate the majority of excitatory neurotransmission throughout the mammalian brain. Based on their pharmacology, there are three main classes of glutamate-activated channels:

  • α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs)
  • kainate receptors
  • N-methyl-d-aspartate receptors (NMDAR).

Among ion-gated receptor subtypes (iGluRs), NMDAR are exceptional in their high unitary conductance, high Ca2+ permeability, and remarkably slow gating kinetics.

Ketamine has relatively specific effects on other glutamate subtypes. Several families of these receptors also include AMPA-type and kainate receptors, and the metabotropic family of receptors, of which many exist. NMDARs, in particular, are glutamate-gated ion channels primarily for calcium ions and are crucial for neuronal communication. NMDARs form tetrameric complexes that consist of several subunits. The subunit composition of NMDARs is subject to many changes, resulting in large numbers of receptor subtypes. Each subtype has distinct pharmacological and signaling properties.1 Interest and research is growing and abounds in defining specific functions of subtypes of the glutamate receptor system in both normal and pathological conditions in the central nervous system.

Clinical use of ketamine has led to reports of psychedelic side effects, such as hallucinations, memory defects, panic attacks, as well as nausea/vomiting, somnolence, cardiovascular stimulation and, in a minority of patients, hepatoxicity.In the author’s clinical experience, patients may feel a temporary sense of calm or fogginess after ketamine infusion.

Use in Migraine, Cluster Headache, and Neuropathic Pain Disorders

In more recent years, a very small number of clinicians, including the author, have used ketamine intravenously (IV), and in some cases, via intramuscular injection, to treat migraine, cluster headache, and various other chronic pain disorders, including mixed headache and neuropathic pain clinical syndromes.3-21 In the author’s clinic specifically, ketamine has been used via IV administration for more than 20 years to treat nearly 1,000 patients with various headache and pain disorders. These include: migraine and cluster headache flare-ups; headaches associated with orofacial pain disorders, such as trigeminal neuralgia (TN); atypical face pain; temporomandibular joint disorder (TMD); and neck pain.

Clinical use of ketamine has led to reports of psychedelic side effects, such as hallucinations, memory defects, panic attacks, as well as nausea/vomiting, somnolence, cardiovascular stimulation and, in a minority of patients, hepatoxicity. In the author’s clinical experience, patients may feel a temporary sense of calm or fogginess after a ketamine infusion.

The focus of this paper is to provide a summary of specific retrospective cases in which intranasal ketamine was used for the rescue of cluster headache in patients who had previously experienced a positive outcome from IV ketamine in the author’s outpatient clinic. Cluster headache was successfully eradicated in several patients [n = 17], prompting a mini anecdotal-based trial of rescue intranasal ketamine for continuing or new cluster headache flare-ups to be used by these patients at their home. Table I outlines the outpatient clinic’s treatment of various migraine and headache types. As shown, cluster headache was successfully eradicated in several patients [n = 17], prompting a mini anecdotal-based trial of rescue intranasal ketamine for continuing or new cluster headache flare-ups to be used by these patients at their home.

Retrospective Case Summaries

The dose of intranasal ketamine prescribed to patients ranged between 7.5 mg and 15 mg per 0.1 cc nasal spray (75 and 150 mg of ketamine per cc compounded in normal saline by a pharmacy). Patients were instructed to use one spray in the nostril of the affected side and wait 10 to 15 minutes to feel any effects, including side effects. They were to use the spray when they felt a cluster attack coming on. Patients were asked to use another spray of ketamine in the same nostril at 10- to 15-minute intervals until a sufficient degree of relief (at least 60 to 75%) was obtained for that cluster attack. If the attack still came on after about one hour, the instructions were for the patient to repeat the procedure. All patients were instructed not to drive after taking the medication and signed off on this agreement. Patients were also instructed to keep the nasal spray refrigerated when not in use; no efficacy loss was reported. Of the 17 patients who trialed the nasal spray, 11 elected not to have the intranasal ketamine compounded, or were lost to follow-up, leaving six case scenarios which are summarized herein.

Case 1

A 38-year-old male, with a 16-year history of cluster headache, including a family history of the same, had tried a number of acute and prophylactic agents with, at best, a shortening of the cluster episode. His attacks tended to flare in the spring and lasted up to three months at a time with 4 to 6 episodes per day. The attacks prevented him from working and he came to the outpatient clinic for IV treatment with ketamine, which resulted in a complete cessation after three days, with resolution of allodynia on the right side as well. He elected to try intranasal ketamine (15 mg) at the first onset of his next cluster episode. He reported pain relief and a feeling of calm after 2 to 3 sprays, with no adverse effects. Sometimes, he had to repeat the dosing regimen the next day.

Case 2

A 25-year-old woman was thrown from a horse during a competition and fractured her cervical spine, requiring surgery. The injury included syringomyelia between C3 and C7-T1 and left her with left-sided dystonia of the upper and lower body, abdomen, and chest wall, together with left-sided migraines, which she reported as new. Several times a year, she would awaken every night with left-sided cluster headache episodes, with facial allodynia, tearing, eyelid drooping, and increased dystonia and neck spasm; these occurred primarily in the winter season, with several up to six episodes in per night for a period of three to six weeks.

IV ketamine relieved most of her dystonic, cluster headache, and migraine symptoms, when complemented by IV and oral baclofen and tizanidine, as well as rescue opioids. Nasal spray ketamine was compounded, as well as buccal troches; both allowed her to continue working full-time in her hair salon. She reported no side effects while using the nasal spray ketamine. Liver function tests conducted every three to six months were unremarkable.

Cluster headache is characterized by excruciating, debilitating pain lasting from 15 to 180 minutes, or occasionally longer. The pain is typically located around or through one eye or on the temple. (Source: 123RF)

Case 3

A 55-year-old woman with episodic cluster headache and migraine (3 to 4 attacks per week) also experienced chronic neck pain and had diagnosed TN on the right side. Her cluster headache attacks started at age 27, with tearing, allodynia, and facial numbness. On occasion, her migraine would evolve into a cluster episode that came on during sleep and was seasonal as well, lasting about 2 months on average. She was not a smoker and had no family history of cluster headache but did have a family history of migraine.

She was treated successfully for migraine, right TN, and neck pain with botulinum toxin-A injections (Botox) every 3 to 5 months, supplemented by prophylactic neuropathically active medications, but no opioids. The Botox did not affect her cluster headache, except when they evolved from a migraine, and only to a slight extent (15 to 20%). Multiple acute and prophylactic therapies were attempted to resolve the cluster headache episodes to no significant avail.

IV ketamine was tried on one occasion over a period of 4 days during a cluster headache episode. As a result, the attacks were reduced from 5 per day to 1 per day, and only 1 cluster attack the following week, which was resolved with additional oral oxcarbazepine (600 mg).

The patient agreed to trial nasal spray ketamine which was compounded at 10 mg per 0.1 cc spray with the suggestion that she spray the right nostril every 10 to 15 minutes upon attack to give the medicine time to absorb from the nasal mucosa and to repeat the process until at least 75% relief was obtained. She reported being happy with this approach as it gave her control of her hardest-to-treat symptom. She also reported that her cluster episodes became less frequent over about 1 year and that her migraine and TN also improved; her Botox injection intervals grew longer over time.

Case 4

A 70-old-male, with a 40-plus year history of right-sided cluster attacks with eyelid drooping, tearing, allodynia, neck pain, and other symptoms was treated for these symptoms for many years. Opioids provided him with partial relief, at best. He had a chronic cluster headache that typically awoke him from a sound sleep at 1 or 2 am. These episodes were especially bad in the winter and during weather changes. He had a history of facial and other traumas before the headaches started, including a car accident, but no family history of cluster headache. He also had occasional migraine, about three per month, as well as chronic neck and back pain. He was treated with IV medications, including ketamine, up to 200 mg over 5 hours, with relief of his symptoms in the clinic.

He agreed to trial a compounded nasal spray of ketamine [12.5 mg per 0.1 cc] to use at each bedtime. Two sprays were indicated before each bedtime and at the first onset of any cluster headache at night. Sprays were repeated every 10 minutes until 50 to 65% relief was achieved. He took tizanidine before bedtime for neck spasm and sleep. The patient would, on occasion, repeat one or two ketamine sprays in the morning or during the day if he felt the next cluster attack coming on. As he was on frequent IV and nasal spray ketamine, his liver functions tests were routinely monitored over the course of several years; there was no observed impact.

Case 5

A 34-year-old male who worked in construction began having episodic cluster headache episodes at age 22. He had a family history of migraine and cluster headache. His attacks were season-specific, occurring mostly in the early summer of each or every other year. He described the attacks as very disabling and often awoke from a sound sleep for several weeks at a time as a result of them. He had tried several oral medications, including opioids, for suppression of symptoms without any real benefit and many side effects. When he first presented to the clinic, he trialed IV lidocaine, IV valproate sodium, and IV magnesium sulfate with only partial success in shutting down the episode.

IV ketamine was also offered at the beginning of one of his episodes, and it proved to work more effectively than other treatments. Specifically, the patient’s cluster episode duration was reduced by more than two-thirds (6 to 7 weeks to 7 to 10 days). Based on this result, he was prescribed compounded nasal spray ketamine (7.5 mg per 0.1cc spray) and instructed to use the spray once at bedtime, with additional sprays in one nostril (the affected side of the cluster headache) every 10 minutes until relief was obtained to at least 75%. The patient was also instructed to use the same approach during the day if the cluster headache returned. He used nasal spray ketamine for several years and his overall pattern became easier to treat successfully. His episodes grew further apart and he has reported only one short cluster headache episode in the past four years.

She got extinction of the cluster episode or at least 75% reductions in the cluster headache severity with up to 4-5 nasal sprays of ketamine at the dose described above, and has also noticed a shortening and diminution of the cluster headache episodes as time has gone by.

Case 6

A 51-year-old male, with a family history of cluster headache began having episodic attacks at age 18 with strong occurrences in the spring. He was a smoker. He had tried a calcium channel blocker, lithium, and other medications to little or no avail over the years. He found that triptans taken early in the course of a cluster attack, at several doses, would sometimes abort or lighten the burden of that particular cluster series.

A 3-day course of IV ketamine at the onset of one of his episodes nearly eradicated the episode, and since he lived a great distance (6 hours each way) from the clinic, he wanted to try the nasal spray form of ketamine for at-home application. He reported that a daily dose of 1500 mg of Depakote-ER often softened the arrival of his next cluster headache episode, as did prescribed triptans. However, he did not experience an end to the attack until IV ketamine had been administered.

15 mg per 0.1cc of nasal spray ketamine were compounded for this patient. He reported some nasal burning with the nasal ketamine formulation, so was advised by his pharmacist to use one drop of 2% lidocaine and orange oil as part of the prescription. This addition alleviated the side effect. The patient has successfully used this approach for many years to date. He requires 5 to 6 nasal sprays of ketamine per day, and his episodic cluster headache pattern has markedly softened and shortened in the past few years. He has reduced his dosage of Depakote-ER to 1 or 2 per day as well and attempted to stop smoking several times.

Discussion and Recommendation

The specificity of the ketamine speaks to a unique mechanism of action primarily through the blockade of the NMDA-glutamate and other close-related receptors. This treatment approach may provide insight into the distinctive involvement of this receptor family in the generation and maintenance of this and perhaps other, more rare trigeminal autonomic cephalalgias, or TACs.21

Based on this anecdotal evidence, observed retrospectively in the author’s outpatient clinic over a period of 20 years, intranasal ketamine seems to offer a legitimate, safe pharmacologic treatment for cluster headache rescue. The medication adds a new dimension to managing out-of-control cluster headache and mixed headache/pain disorders in an outpatient setting with no monitoring. Double-blind, placebo-controlled studies are needed to confirm these primarily open-label observations. It should be noted that a small number of patients (5) were given sham nasal treatment and their cluster headache did not respond.

The author found sub-anesthetic doses of intranasal ketamine to be very useful in the control of episodic and chronic cluster headache attacks, as well as in managing certain trigeminal neuralgia symptoms. On a 0 to 10 visual analog scale, pain scores were below 60 to 65% from initial baseline pain score after the use of the intranasal ketamine spray. Efficacy, as well as safety, and tolerability, of low dose IV ketamine were seen consistently in the outpatient clinic, without significant adverse effects. In the author’s opinion, therefore, ketamine may be considered when treating this clinically disabling condition. When used under controlled conditions, ketamine in a nasal spray form may offer a safe and more effective option to patients than emergency room visits and may also serve as a substitute for more standard IV-based rescue cluster headache medications.

About Cluster Headache:Cluster headache is characterized by excruciating, debilitating pain lasting from 15 to 180 minutes, or occasionally longer. The pain is typically located around or through one eye or on the temple. A series of cluster headaches can take place over several weeks to months, and may occur once or twice per year. Several of the following related symptoms may occur: lacrimation, nasal congestion, rhinorrhea, conjunctival injection, ptosis, miosis of the pupil, or forehead and facial sweating. Nausea, bradycardia and general perspiration may present as well. Attacks usually recur on the same side of the head. Cluster headaches afflict males more than females by a 2.5 to 1 ratio and have an overall prevalence of 0.4%. Onset of clusters is usually between ages 20 and 45. There is often no family history of cluster headache.

  1. Robert K, Simon C. Pharmacology and Physiology in Anesthetic Practice. 4th ed. Baltimore, MD: Lippincott, Williams & Wilkins; 2005
  2. Niesters M, Martini C, Dahan A. Ketamine for chronic pain: risks and benefits. Br J Clin Phamacol. 2014;77(2):357–367.
  3. Virginia Scott-Krusz, Jeanne Belanger, RN, Jane Cagle, LVN, Krusz, JC, Effectiveness of IV therapy in the headache clinic for refractory migraine, poster at 9th EFNS meeting Athens, Greece. 2005.
  4. Krusz, JC. Intravenous treatment of chronic daily headaches in the outpatient headache clinic. Curr Pain Headache Rep. 2006;10(1):47-53.
  5. Krusz JC, Cagle J, Belanger J, Scott-Krusz, V. Effectiveness of IV therapy for pain in the clinic, Poster P183 presented at 2nd International Congress on Neuropathic Pain Berlin, Germany. 2007
  6. Krusz JC, Cagle J, Hall S. Efficacy of IV ketamine to treat pain disorders in the pain clinic, (poster 216). J Pain. 27th Annual Scientific. American Pain Society, 2008.
  7. Krusz JC, Cagle J, Hall S. Efficacy of IV ketamine in treating refractory migraines in the clinic (poster 218). J Pain. 27th Annual Scientific. American Pain Society, 2008.
  8. Krusz JC, Cagle J, Hall S. Intramuscular (IM) ketamine for treating headache and pain flare-ups in the clinic (poster 219). J Pain. 27th Annual Scientific. American Pain Society, 2008.
  9. Krusz JC. IV ketamine in the clinic to treat Cluster Headache (poster abstract). American Academy of Neurology. Neurol. 2009;72(11):A89-90.
  10. Krusz JC, Cagle J, Scott-Krusz VB. Ketamine for treating multiple types of headaches (poster). 14th Congress International Headache Society. Cephalalgia. 2009;29(Suppl 1)163.
  11. Krusz JC. Difficult Migraine Patient. Pract Pain Manage. 2011;11(4):16.
  12. Krusz JC, Cagle J. IV Ketamine: Rapid Treatment for All TAC Subtypes in the Clinic, Abstract Poster #72, 15th Congress of the International Headache Society, Berlin, Germany, 2011.
  13. Krusz JC, Cagle J. IM ketamine for intractable headaches and migraines (poster abstract). American Headache Society Annual Meeting, Los Angeles, CA, 2012.
  14. Krusz JC. Traumatic Brain Injury: Treatment of Post-traumatic Headaches. Pract Pain Manage. 2013;13(5):57-68.
  15. Krusz JC, Cagle J, Belanger J, Scott-Krusz V. Effectiveness of IV therapy for pain in the clinic, Poster P183. European J Pain:11, Suppl 1, pS80, presented at 2nd Int’l Congress on Neuropathic Pain, Berlin, Germany. 2007.
  16. Krusz JC, Cagle J, Hall S. Efficacy of IV ketamine to treat pain disorders in the pain clinic, (poster 216). J Pain, 9: Suppl 2, P30, 27th Annual Scientific. American Pain Society. 2008.
  17. Krusz JC. Ketamine IV in an outpatient setting: effective treatment for neuropathic pain syndromes (poster #378). 32nd Annual Scientific Meeting, American Pain Society, New Orleans, 2013.
  18. Krusz JC. Ketamine IV – for CRPS, TN/TMD and other neuropathic pain in the outpatient clinic (poster #524). 4th International Congress on Neuropathic Pain, Toronto, Ontario, 2013.
  19. Krusz JC. The IV ketamine experience: treatment of migraines, headaches and TAC. JAMA Neurol. 2018
  20. Matharu MS, Goadsby PJ. Trigeminal Autonomic Cephalalgias: Diagnosis and Management. In: Silberstein SD, Lipton RB, Dodick DW, eds. Wolff’s Headache and Other Head Pain. 8th ed. New York, NY: Oxford Univ Press; 2008:379-430.
  21. Johnson JW, Glasgow NG, Povysheva NV. Recent insights into the mode of action of memantine and ketamine. Curr Opin Pharmacol. 2015 ;20:54-63. 

Welcome to the Cluster Headache Support Group!

Welcome to the Cluster Headache Support Group!

Cluster Headache Support Group https://chsg.org/

Depression Esketamine Ketamine Spravato

703-844-0184 | NORTHERN VIRGINIA KETAMINE CENTER FOR DEPRESSION | NOVA HEALTH RECOVERY | Esketamine Virginia | Intranasal Ketamine for depression | SPRAVATO CENTER OF FAIRFAX | INTRANSAL KETAMINE CENTER | 22304 22306 | Fairfax, Va | Reston Virginia Ketamine Infusion Center | Loudoun County Ketamine| 22201 | Arlington Ketamine Center | Mclean Ketamine Clinic

NOVA Health Recovery | Alexandria, Va 22306 | Call for esketamine and nasal ketamine as well as IV Ketamine for depression, PTSD, anxiety  703-844-0184 < Link



Ketamine could be first of new generation of rapid acting antidepressants, say experts

Ketamine is the first truly new pharmacological approach to treating depression in the past 50 years and could herald a new generation of rapid acting antidepressants, researchers have predicted.

“We haven’t had anything really new for about 50 or 60 years,” said Allan Young, professor of mood disorders at the Institute of Psychiatry, Psychology and Neuroscience at King’s College, London, at a briefing on 12 July at London’s Science Media Centre.

Most of the new launches have been “tinkering with drugs which were really discovered in the ’50s and ’60s,” he explained. “Even the famous Prozac, which came in in the late ’80s, is really just a refinement of the tricyclic antidepressants that came in the ’50s. People say we are still in the age of steam, and we need to go to the next technological advance.”

Slow onset

In the past few years the focus has fallen on ketamine, which is used for pain relief and anaesthesia but is better known for being a horse sedative and a “club drug” that can induce hallucinations and calmness. It has been found to have rapid antidepressant effects and to be effective in many patients with treatment resistant depression.

US clinics increasingly offer IV infusions of ketamine off label, and in March esketamine, a nasal ketamine based drug, was approved by the US Food and Drug Administration for treatment resistant depression,1 at a cost of £32 400 (€36 060; $40 615) per patient per year.

Carlos Zarate, chief of the Experimental Therapeutics and Pathophysiology Branch at the US National Institute of Mental Health, who has been a key figure in the discovery and evaluation of ketamine as an antidepressant, said that one of the main problems with current antidepressants was their speed of onset in terms of antidepressant and anti-suicidal effects.

He explained that it took 10-14 weeks to see significant improvement with monoaminergic based antidepressants. “In my mind that is too slow,” he said. “We are focusing on treatments that can produce results within hours. That is where we are heading with the next generation of antidepressant, and ketamine is now the prototype for future generation antidepressants which will have rapid, robust antidepressant effects—rapid within a few hours.”

Efficacy and tolerability

Zarate said that, besides correcting chemical imbalances of serotonin and norepinephrine, the new generation of ketamine based antidepressants had other effects such as enhancing plasticity and restoring the synapses and dendrite circuits that shrivel in depression.

When ketamine is given to patients it binds to the N-methyl-D-aspartate (NMDA) receptor, causing a series of transient side effects including decreased awareness of the environment, vivid dreams, and problems in communicating. But the half life of ketamine is only two to three hours, so these side effects quickly subside, whereas the therapeutic effects of the drug last seven days or longer.

Zarate’s team is now focusing on the 24 metabolites of ketamine to hone the drug’s efficacy and tolerability. One of these, hydroxynorketamine, has already been shown to have similar antidepressive effects to ketamine in animals, without the side effects, and it is due to be tested in patients this autumn.

“Ketamine may actually be a prodrug for hydroxynorketamine,” said Zarate.

High cost

A few dozen patients with treatment resistant depression have been treated with ketamine in UK trials, and the European Medicines Agency and the Medicines and Healthcare Products Regulatory Agency are due to reach a decision on authorising esketamine for marketing in October. If the drug is approved private clinics will be able to provide it. But it would be unlikely to be available through the NHS until at least 2020, if at all, as the National Institute for Health and Care Excellence would need to deem it cost effective.

Rupert McShane, consultant psychiatrist and associate professor at the University of Oxford, said that, as well as the likely high cost of esketamine, patients treated with it must be observed in a clinic for two hours after each administration. This would require substantial clinical time, as esketamine is given twice a week for the first month, once a week for the second month, and once a week or once a fortnight from then on.

McShane also recommended that, if approved, a multidrug registry should be set up to monitor the long term safety and effectiveness of ketamine based drugs. Patients would be asked to input their use of any prescribed ketamine, esketamine, or any other future ketamine based product, as well as any self medication with illicit ketamine.

References


    1. Silberner J
    . Ketamine should be available for treatment resistant depression, says FDA panel. BMJ2019;364:l858.doi:10.1136/bmj.l858 pmid:30796014FREE Full TextGoogle Scholar



CALL US
Consultation